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angle of the solutions decreases with increasing interaction.

Keywords: Topological Strings, Spontaneous Symmetry Breaking

ArXiv ePrint: 0904.4591

c© SISSA 2009 doi:10.1088/1126-6708/2009/07/068

mailto:b.hartmann@jacobs-university.de
mailto:f.arbabzadah@jacobs-university.de
http://arxiv.org/abs/0904.4591
http://dx.doi.org/10.1088/1126-6708/2009/07/068


J
H
E
P
0
7
(
2
0
0
9
)
0
6
8

Contents

1 Introduction 1

2 The model 3

2.1 The Ansatz 3

2.2 Equations of motion 4

2.3 Boundary conditions 5

2.4 Energy per unit length, magnetic fields and deficit angle 5

2.5 The Bogomolny-Prasad-Sommerfield (BPS) bound 6

2.6 Dark strings coupled to an unbroken U(1) symmetry 7

3 Numerical results 7

3.1 γ = 0 7

3.2 γ 6= 0 10

4 Conclusions and outlook 13

1 Introduction

There is strong observational evidence [1] that approximately 22% of the total energy

density of the universe is in the form of dark matter. Up until now it is unclear what this

dark matter should be made of. One of the favourite candidates are Weakly Interacting

Massive Particles (WIMPs) which arise in extensions of the Standard Model. Recently,

new theoretical models of the dark matter sector have been proposed [2], in which the

Standard Model is coupled to the dark sector via an attractive interaction term. These

models have been motivated by new astrophysical observations [3] which show an excess

in electronic production in the galaxy. Depending on the experiment, the energy of these

excess electrons is between a few GeV and a few TeV. One possible explanation for these

observations is the annihilation of dark matter into electrons. Below the GeV scale, the

interaction term in these models is basically of the form of a direct coupling between the

U(1) field strength tensor of the dark matter sector and the U(1) field strength tensor of

electromagnetism. The U(1) symmetry of the dark sector has to be spontaneously broken,

otherwise a “dark photon” background leading to observable consequences would exist.

Consequently, it has been shown that the dark sector can have string-like solutions,

denominated “dark strings” and the observational consequences of the interaction of these

dark strings with the Standard Model have been discussed [4].

Topological defects are believed to have formed in the numerous phase transitions

in the early universe due to the Kibble mechanism [5]. While magnetic monopoles and
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domain walls, which result from the spontaneous symmetry breaking of a spherical and

parity symmetry, respectively, are catastrophic for the universe since they would overclose

it, cosmic strings are an acceptable remnant from the early universe. These objects form

whenever an axial symmetry gets spontaneously broken and (due to topological arguments)

are either infinitely long or exist in the form of cosmic string loops. Numerical simulations

of the evolution of cosmic string networks have shown that these reach a scaling solution,

i.e. their contribution to the total energy density of the universe becomes constant at

some stage. The main mechanism that allows cosmic string networks to reach this scaling

solution is the formation of cosmic string loops due to self-intersection and the consequent

decay of these loops under the emission of gravitational radiation.

For some time, cosmic strings were believed to be responsible for the structure forma-

tion in the universe. New Cosmic Microwave background (CMB) data, however, clearly

shows that the theoretical power spectrum associated to Cosmic strings is in stark contrast

to the observed power spectrum. However, there has been a recent revival of cosmic strings

since it is now believed that cosmic strings might be linked to the fundamental strings of

string theory [6].

While perturbative fundamental strings were excluded to be observable on cosmic

scales for many reasons [7], there are now new theories containing extra dimensions, so-

called brane world model, that allow to lower the fundamental Planck scale down to the TeV

scale. This and the observation that cosmic strings generically form at the end of inflation

in inflationary models resulting from String Theory [8] and Supersymmetric Grand Unified

Theories [9] has boosted the interest in comic string solutions again. The interaction of

cosmic strings has been investigated in the context of field theoretical models describing

bound systems of D- and F-strings, so-called p-q-strings [10, 11].

Here we study the interaction of cosmic strings with dark string solutions. On a field

theoretical level, the model is similar to the one used in [10, 11], however in this paper,

the interaction between the strings is mediated via the gauge fields (and gravity), while

the strings in [10, 11] interact via a potential (and gravity). While the dark sector in our

model is an Abelian Higgs model, we should in principle couple the corresponding solutions

to the electromagnetic field of the Standard model. Here, we assume the U(1) symmetry

to be spontaneously broken and the corresponding Abelian-Higgs model to possess cosmic

string solutions. In fact, we employ the strategy that the Standard model (and its semilo-

cal brother) have string-like solutions [12] which share many features with the solutions of

the U(1) toy model. Solutions in this U(1) Abelian-Higgs model have been first discussed

in [13]. These solutions have a magnetic field with a quantized magnetic flux and are topol-

gical solitons in the sense that they have a topological charge associated to them. When

the gauge boson mass is equal to the Higgs boson mass in this theory, the string solutions

fulfill an energy bound, the Bogomolny-Prasad-Sommerfield (BPS) bound [14], such that

the energy per unit length is directly proportional to the topological charge. These so-

lutions have been discussed extensively and their gravitational properties have also been

investigated [15–17]. The main feature of the space-time around a cosmic string is that

it is locally flat, but globally possesses a deficit angle δ that is directly proportional to

the energy per unit length of the solutions µ: δ = 8πGµ, where G is Newton’s constant.
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This leads e.g. to gravitational lensing effects that should make it possible to detect cosmic

strings in the universe. Interestingly, globally regular gravitating strings exist only as long

as the solutions are not too massive. If they become too massive (or the gravitational

coupling becomes too large) the deficit angle is larger than 2π and the space-time is singu-

lar [18]. It has been noted [16, 17] that solutions that are BPS in flat space-time are also

BPS is curved space-time, i.e. fulfill the same energy bound.

Our paper is organized as follows: in section 2, we give the model, the equations

and discuss the BPS bound. In section 3, we present our numerical results and section 4

contains our conclusions and an outlook.

2 The model

We study the interaction of a U(1) Abelian-Higgs field model, which has cosmic string

solutions, with the low energy dark sector, which is also a U(1) Abelian-Higgs model

in flat and curved space-time, respectively. Note that the U(1) model is a toy model

here for standard model-like theories with gauge group SU(2)× U(1), which also contain

string solutions. Examples would be semilocal strings in the SU(2)global × U(1) model and

electroweak strings in the SU(2)local × U(1) model [12], respectively. We believe that our

toy model captures the qualitative features of these theories.

The model we are studying is given by the following action:

S =

∫

d4x
√−g

(

1

16πG
R + Lm

)

(2.1)

where R is the Ricci scalar and G denotes Newton’s constant. The matter Lagrangian

Lm reads:

Lm = Dµφ(Dµφ)∗ − 1

4
FµνFµν + Dµξ(Dµξ)∗ − 1

4
HµνH

µν − V (φ, ξ) +
ε

2
FµνHµν (2.2)

with the covariant derivatives Dµφ = ∇µφ − ie1Aµφ, Dµξ = ∇µξ − ie2aµξ and the field

strength tensors Fµν = ∂µAν − ∂νAµ, Hµν = ∂µaν − ∂νaµ of the two U(1) gauge potential

Aµ, aµ with coupling constants e1 and e2. φ and ξ are complex scalar fields (Higgs fields)

with potential

V (φ, ξ) =
λ1

4

(

φφ∗ − η2
1

)2
+

λ2

4

(

ξξ∗ − η2
2

)2
(2.3)

The term proportional to ε is the interaction term [4]. To be compatible with observations,

ε should be on the order of 10−3.

In the following, we associate the dark strings to the fields Aµ and φ, while the standard

cosmic strings are described by the fields aµ and ξ. The Higgs fields have masses MH,i =√
λiηi, while the gauge boson masses are MW,i =

√
2eiηi, i = 1, 2.

2.1 The Ansatz

In the following we shall analyse the system of coupled differential equations associated

with the gravitationally coupled system described above. This system will contain the

Euler-Lagrange equations for the matter fields and the Einstein equations for the metric

– 3 –
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fields. In order to do that, let us write down the matter and gravitational fields as shown

below. The most general, cylindrically symmetric line element invariant under boosts along

the z−direction is:

ds2 = N2(ρ)dt2 − dρ2 − L2(ρ)dϕ2 − N2(ρ)dz2 . (2.4)

The non-vanishing components of the Ricci tensor Rν
µ then read [15]:

R0
0 = −(LNN ′)′

N2L
, Rρ

ρ = −2N ′′

N
− L′′

L
, Rϕ

ϕ = −(N2L′)′

N2L
, Rz

z = R0
0 (2.5)

where the prime denotes the derivative with respect to ρ.

For the matter and gauge fields, we have [13]:

φ(ρ, ϕ) = η1h(ρ)einϕ , ξ(ρ, ϕ) = η1f(ρ)eimϕ (2.6)

Aµdxµ =
1

e1
(n − P (ρ))dϕ , aµdxµ =

1

e2
(m − R(ρ))dϕ . (2.7)

n and m are integers indexing the vorticity of the two Higgs fields around the z−axis.

2.2 Equations of motion

We define the following dimensionless variable and function:

x = e1η1ρ , L(x) = η1e1L(ρ) . (2.8)

Then, the total Lagrangian Lm → Lm/(η4
1e2

1) depends only on the following dimen-

sionless coupling constants

γ = 8πGη2
1 , βi =

2M2
H,i

M2
W,i

η2
1

η2
i

=
λi

e2
1

, i = 1, 2 , (2.9)

and the dimensionless ratios of the coupling constants and vacuum expectation

values, respectively

g =
e2

e1
, q =

η2

η1
. (2.10)

Varying the action with respect to the matter fields and metric functions, we obtain a

system of six non-linear differential equations. The Euler-Lagrange equations for the matter

field functions read:

(N2Lh′)′

N2L
=

P 2h

L2
+

β1

2
(h2 − 1)h (2.11)

(N2Lf ′)′

N2L
=

R2f

L2
+

β2

2
(f2 − q2)f (2.12)

(1 − ε2)
L

N2

(

N2P ′

L

)′

= 2h2P + 2εgRf2 , (2.13)

(1 − ε2)
L

N2

(

N2R′

L

)′

= 2g2f2R + 2εgPh2 , (2.14)

– 4 –



J
H
E
P
0
7
(
2
0
0
9
)
0
6
8

where the prime now and in the following denotes the derivative with respect to x.

We use the Einstein equations in the following form:

Rµν = −γ

(

Tµν − 1

2
gµνT

)

, µ, ν = t, x, ϕ, z (2.15)

where T is the trace of the energy momentum tensor T = T λ
λ and the non-vanishing

components of the energy-momentum tensor are (we use the notation of [15]) with i = 1, 2:

T 0
0 = es + ev + ew + u , T x

x = −es − ev + ew + u

Tϕ
ϕ = es − ev − ew + u , T z

z = T 0
0 (2.16)

where

es = (h′)2 + (f ′)2 , ev =
(P ′)2

2L2
+

(R′)2

2g2L2
− ε

g

R′P ′

L2
, ew =

h2P 2

L2
+

R2f2

L2
(2.17)

and

u =
β1

4

(

h2 − 1
)2

+
β2

4

(

f2 − q2
)2

. (2.18)

We then obtain

(LNN ′)′

N2L
= γ

[

(P ′)2

2L2
+

(R′)2

2g2L2
− ε

g

R′P ′

L2
− u

]

(2.19)

and:

(N2L′)′

N2L
= −γ

[

2h2P 2

L2
+

2R2f2

L2
+

(P ′)2

2L2
+

(R′)2

2g2L2
− ε

g

R′P ′

L2
+ u

]

(2.20)

2.3 Boundary conditions

The requirement of regularity at the origin leads to the following boundary conditions:

h(0) = 0, f(0) = 0 , P (0) = n , R(0) = m (2.21)

for the matter fields and

N(0) = 1, N ′(0) = 0, L(0) = 0 , L′(0) = 1 . (2.22)

for the metric fields. The finiteness of the energy per unit length requires:

h(∞) = 1, f(∞) = q , P (∞) = 0 , R(∞) = 0 . (2.23)

2.4 Energy per unit length, magnetic fields and deficit angle

We define as inertial energy per unit length of a solution describing the interaction of a

dark string with winding n and a cosmic string with winding m:

µ(n,m) =

∫ √−g3T
0
0 dxdϕ (2.24)

– 5 –
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where g3 is the determinant of the 2 + 1-dimensional space-time given by (t, x, ϕ). This

then reads:

µ(n,m) = 2π

∫ ∞

0
NL (εs + εv + εw + u) dx (2.25)

Note that the string tension T =
∫ √−g3 T z

z dxdϕ is equal to the energy per unit length.

In flat space-time (G = 0) and ε = 0, the energy per unit length of the solution is given by

µ(n,m) = 2πη2
1g1(β1) + 2πη2

1g2(β2) (2.26)

where g1 and g2 are functions that depend only weakly on β1 and β2, respectively with

g1(2) = 1 and g2(2) = 1 in the BPS limit. In the following, we will set η1 = 1 without loss

of generality.

We can define the binding energy of an n-dark string with an m-cosmic string as

µ
(n,m)
bin = µ(n,m) − nµ(1,0) − mµ(0,1) (2.27)

The magnetic fields associated to the solution can be given when noting that the gauge

part of the Lagrangian density can be rewritten as follows [4]:

− 1

4
FµνFµν − 1

4
HµνH

µν +
ε

2
FµνHµν ⇒ −1

4
F̃µν F̃µν − 1

4
(1 − ε2)HµνHµν (2.28)

with F̃µν = ∂µÃν − ∂νÃµ where Ãµ = Aµ − εaµ.

The magnetic fields associated to the fields Ãµ and aµ have only a component in

z-direction. These components read:

B̃z(x) =
−P ′(x) + ε

gR′(x)

e1L(x)
and bz(x) = −

√

1 − ε2
R′(x)

e2L(x)
, (2.29)

respectively. The corresponding magnetic fluxes
∫

d2x B are

Φ̃ =
2π

e1

(

n − ε

g
m

)

and ϕ =
√

1 − ε2
2πm

e2
, (2.30)

respectively. Obviously, these magnetic fluxes are not quantized for generic ε.

Finally, the deficit angle δ = 8πGµ of the solution can be read of directly from the

derivative of the metric function L(x). For string-like solutions, the metric functions behave

like N(x → ∞) → c1 and L(x → ∞) → c2x + c3, where c1, c2 and c3 are constants. The

deficit angle is then given by:

δ = 2π(1 − L′|x=∞) = 2π(1 − c2) . (2.31)

2.5 The Bogomolny-Prasad-Sommerfield (BPS) bound

For ε = 0, the model has BPS solutions which satisfy the energy bound µ = 2πn + 2πm

both in flat [14] as well as in curved space-time [17] for β1 = 2, β2 = 2.

Here we will discuss the case f = h (β1 = β2 ≡ β), P = R (n = m, g = 1) for ε 6= 0. In

flat space-time, the functions N ≡ 1 and L ≡ x and the corresponding BPS equations read

h′ =
Ph

x
, (1 − ε)

P ′

x
= h2 − 1 (2.32)

– 6 –
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The solutions then fulfill the energy bound E = 2πn + 2πm = 4πn for

β =
2

1 − ε
(2.33)

In curved space-time, i.e. for γ 6= 0, the above bound is still a BPS bound. The

corresponding matter equations read

h′ =
Ph

L
, (1 − ε)

P ′

L
= h2 − 1 . (2.34)

We have ev = u and ew = es such that T x
x = Tϕ

ϕ = 0. Hence N(x) ≡ 1, while L fulfills the

following equation:
L′′

L
= −2γ

(

2P 2h2

L2
+

1

1 − ε
(h2 − 1)2

)

(2.35)

The deficit angle then reads

δ = 2πγ(n + m) . (2.36)

2.6 Dark strings coupled to an unbroken U(1) symmetry

For β2 = 0, q = 0 (with η1 finite), we have f ≡ 0 and the corresponding U(1) symmetry

remains unbroken. For ε = 0, m = 0, we would then have R ≡ 0. However, for ε 6= 0,

m = 0 the energy of the solution can be lowered by a non-vanishing derivative of R, i.e.

R′ 6= 0. This corresponds to a non-vanishing magnetic field in z-direction. Due to the

attractive nature of the interaction, the dark string can thus lower its energy by coupling

to a non-vanishing magnetic field inside the string core. The corresponding boundary

conditions for R then read:

R(0) = 0 and R′|x=∞ = 0 (2.37)

Note that we don’t need R but only R′ to vanish at infinity to fulfill the requirement of finite-

ness of the energy. (2.17) then suggests that the ev part of the energy density is minimized

for R′ = εgP ′ inside the dark string core. Using the boundary conditions (2.21), (2.37) we

find that R = εg(P − n). The energy of an (n, 0) string is thus smaller for ε 6= 0 than for

ε = 0. The same is, of course, also true for the inverse case, where n = 0 and m 6= 0 and

R replaced by P in the boundary conditions (2.37).

3 Numerical results

In all our numerical calculations, we have set q = 1, g = 1. We have solved the set of

coupled ordinary differential equations numerically using the ordinary differential equation

solver COLSYS [20]. Numerical errors are typically on the order of 10−8 − 10−9.

3.1 γ = 0

To begin with, we present our results for cosmic-dark string systems in flat space-time

γ = 0. In this case, we have N ≡ 1 and L ≡ x.

– 7 –
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f(x)
P(x)
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P(x)

h(x)

f(x)

R(x)/ε

n=3, m=0

β
1
=2, β

2
=0

ε=0.1

Figure 1. The functions of a dark string solution for n = 3, m = 0, β1 = 2, β2 = 0 and ε = 0.1.

The fields associated to the dark string are P (x) and h(x), while the scalar field of the unbroken

U(1) symmetry vanishes identically f(x) ≡ 0. The gauge field function R(x) however is related to

the function P (x) by R(x)/ε = P (x) − n.

(n,m) 1 2 3 4 5

1 -0.0004 -0.0006 -0.0008 -0.0009 -0.0009

2 -0.0006 -0.0011 -0.0014 -0.0016 -0.0017

3 -0.0008 -0.0014 -0.0028 -0.0022 -0.0024

4 -0.0009 -0.0016 -0.0022 -0.0026 -0.0030

5 -0.0009 -0.0017 -0.0024 -0.0030 -0.0034

Table 1. The value of the binding energy µ
(n,m)
bin in units of 2π for β1 = β2 = 2, ε = 0.001 and

different choices of n and m.

We have first studied solutions with m = 0, β2 = 0. As discussed above, the field

f ≡ 0, but R 6= 0. A typical solutions of this type is shown in figure 1, where we present the

functions P (x) and h(x) associated to the dark strings as well as the field R(x) associated

to the unbroken U(1) symmetry. The energy per unit length of the dark strings is lowered

from µ(3,0) = 3 for ε = 0 to µ(3,0) = 2.99080 for ε = 0.1.

Next, we have investigated the existence of bound states in our system. Following the

definition of the binding energy (2.27), we present our results for ε 6= 0 and β1 = β2 ≡ β.

In the ε = 0 limit, µ
(n,m)
bin > 0 for β > 2, µ

(n,m)
bin < 0 for β < 2 and µ

(n,m)
bin = 0 for β = 2 (the

BPS limit). This is different here as the tables below suggest. In tables 1,2,3 and 4,5,6 we

give the binding energy for ε = 0.001 and ε = 0.01, respectively, for different choices of β

and n and m.

Increasing ε increases the attractive interaction between the dark string and the comic

string. For ε = 0 and β1 = β2 = 2, the strings do not interact, while for the same choice

– 8 –
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(n,m) 1 2 3 4 5

1 -0.0005 0.0566 0.1319 0.2169 0.3082

2 0.0566 0.1134 0.1886 0.2734 0.3646

3 0.1319 0.1886 0.2635 0.3482 0.4393

4 0.2169 0.2734 0.3482 0.4328 0.5237

5 0.3082 0.3646 0.4393 0.5237 0.6144

Table 2. The value of the binding energy µ
(n,m)
bin in units of 2π for β1 = β2 = 3, ε = 0.001 and

different choices of n and m.

(n,m) 1 2 3 4 5

1 -0.0005 0.1049 0.2448 0.4033 0.5738

2 0.1049 0.2099 0.3497 0.5081 0.6784

3 0.2448 0.3497 0.4893 0.6475 0.8177

4 0.4033 0.5081 0.6475 0.8055 0.9755

5 0.5738 0.6784 0.8177 0.9755 1.1454

Table 3. The value of the binding energy µ
(n,m)
bin in units of 2π for β1 = β2 = 4, ε = 0.001 and

different choices of n and m.

(n,m) 1 2 3 4 5

1 -0.0042 -0.0064 -0.007 -0.0085 -0.0090

2 -0.0064 -0.0109 -0.0138 -0.0158 -0.0171

3 -0.0077 -0.0138 -0.0183 -0.0216 -0.0240

4 -0.0085 -0.0158 -0.0216 -0.0262 -0.0297

5 -0.0090 -0.0171 -0.0240 -0.0297 -0.0344

Table 4. The value of the binding energy µ
(n,m)
bin in units of 2π for β1 = β2 = 2, ε = 0.01 and

different choices of n and m.

(n,m) 1 2 3 4 5

1 -0.0046 0.0501 0.1240 0.2081 0.2988

2 0.0501 0.1023 0.1743 0.2571 0.3468

3 0.1240 0.1743 0.2246 0.3258 0.4142

4 0.2081 0.2571 0.3258 0.4055 0.4926

5 0.2988 0.3468 0.4142 0.4926 0.5784

Table 5. The value of the binding energy µ
(n,m)
bin in units of 2π for β1 = β2 = 3, ε = 0.01 and

different choices of n and m.

of the βs and ε 6= 0 they form bound states for all values of n and m. We observe that

the binding becomes stronger with increasing n + m. This is related to the fact that

the solutions’ mass increases with increasing winding such that the binding mechanism is

more efficient. Moreover, the binding is stronger for an (n, n) string as compared to an

(n + 1, n − 1) string and the binding is more effective for an (n + 1, n − 1) string than for
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(n,m) 1 2 3 4 5

1 -0.0049 0.0978 0.2362 0.3936 0.5634

2 0.0978 0.1978 0.3341 0.4900 0.6587

3 0.2362 0.3331 0.4684 0.6226 0.7899

4 0.3936 0.4900 0.6226 0.7752 0.9410

5 0.5634 0.6587 0.7899 0.9410 1.1053

Table 6. The value of the binding energy µ
(n,m)
bin in units of 2π for β1 = β2 = 4, ε = 0.01 and

different choices of n and m.

an (n+2, n−2) string etc. Apparently, dark strings bind stronger to cosmic strings if they

have the same winding.

For ε = 0 and β1 = β2 = 3 and β1 = β2 = 4, respectively, the strings repel since in this

case the radius of the flux tube core is larger than that of the scalar core. Apparently, in this

case the attractive nature of the new interaction (ε 6= 0) is not strong enough to overcome

the repulsion for these choices of β1 = β2, expect in the case n = m = 1. Apparently, the

attractive interaction is just about able to overcome the repulsion that two strings would

exert on each other for ǫ = 0 and βi > 2, i = 1, 2.

We have next determined the critical value of β1 = β2 ≡ β = βcr for which the

transition between bound and unbound strings takes place. For ε = 0, this happens at

βcr(ǫ = 0) = 2 such that for β < 2, the binding energy is negative, while for β > 2, the

binding energy is positive. Here, the additional attractive interaction allows us to increase

the ratio between Higgs and gauge boson mass to values larger than β = 2 before the dark

string and cosmic string become unbound. To understand the dependence of βcr on ǫ, we

have chosen solutions with n + m constant and have determined the corresponding βcr for

ǫ = 0.01. Our results are given in figure 2.

We plot the mass µ(n,m) of solutions with (n,m) = (4 + k, 4 − k), k = 0, 1, 2, 3. For

comparison, we also plot (4 + k) times the mass of an (1, 0) solution plus (4− k) times the

mass of an (0, 1) solution. At the intersection points of this latter curve with the (4+k, 4−k)

curves, we have µ
(n,m)
bin = 0. For all solutions, we observe that the mass increases linearly

with β1 = β2 ≡ β in the range β ∈ [2 : 2.1] and that the mass of an (4+k1, 4− k1) solution

is higher than that of a (4 + k2, 4 − k2) solution for k1 > k2. Moreover, βcr, i.e. the value

at which the strings become unbound is largest for the solution with n = 4, m = 4 and

decreases for k increasing. Again, this results from the fact that dark strings “bind best”

to cosmic strings which have the same winding.

The magnetic fields (2.29) change as compared to the ε = 0 case. We observe that

B̃z(0) decreases with increasing ε, while bz(0) increases with increasing ε. In addition the

core radii of both flux tubes decrease with increasing ε.

3.2 γ 6= 0

We have first studied the dependence of the deficit angle δ on the interaction parameter

ε. Our results are shown in figure 3 for γ = 0.2, β1 = β2 = 2 and different choices of

n and m. For ε = 0, the deficit angle δ(ε = 0) is given by (2.36). Here, we plot the
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β
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2

µ(n
,m

) /(
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)

 

 

n(1,0)+m(0,1)
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(5,3)
(6,2)
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n(1,0)+m(0,1)

(6,2)
(7,1)

(5,3)

(4,4)

Figure 2. The value of the inertial mass µ(n,m) in units of 2π is given in dependence on β1 = β2

for ǫ = 0.01 and different choices of n and m. Note that n + m = 8. For comparison, we also plot n

times the mass of the (1, 0) solution plus m times the mass of the (0, 1) solution. At the intersection

of the (n, m) curves with this latter curve, we have µ
(n,m)
bin = 0.

difference between δ(ε = 0) and δ(ε 6= 0). The deficit angle decreases with increasing ε

and apparently decreases (approximately) linearly with ε. The larger the sum n + m, the

stronger δ decreases with ε, which is related to the fact that the higher n + m, the more

massive the solutions are and the more effective is the attractive interaction between the

dark string and the cosmic string. Moreover, for a fixed sum n + m, the deficit angle

decreases stronger for an (n, n) string as compared to an (n + 1, n − 1) string. The reason

for this is that the binding mechanism is better for a dark string and a cosmic string with

equal winding. This has also been observed before in models describing interacting cosmic

strings when the interaction is mediated via a potential term [10, 11].

Another important feature of cosmic strings in a curved space-time is that globally

regular gravitating solutions exist only up to a maximal value of the gravitational coupling

γ = γmax(ε). For γ > γmax, the deficit angle becomes larger than 2π, i.e. the solutions

become singular. For ε = 0, these solutions have been denominated “supermassive” string

solutions [18]. For ε = 0 and β1 = β2 = 2 we have γmax(ε = 0) = 1/(n + m). For ε > 0,

the solutions exist on a larger interval of γ. We find e.g. for n = 1, m = 1 and β1 = β2 = 2

that γmax(ε = 0.01) ≈ 0.501, while γmax(ε = 0.1) ≈ 0.515. This is not surprising since the

total energy per unit length of the solutions decreases for increasing ε. Since the deficit

angle is proportional to the product of the gravitational coupling and the energy per unit

length, the gravitational coupling can be increased stronger before δ becomes equal to 2π.

For n 6= 0 and m = 0, we find the same phenomenon as in flat space-time: dark

string solutions can lower their energy by coupling to the gauge field of an unbroken U(1)

symmetry. In figure 4, we compare the masses of string-like solutions for n = 1, m = 1 and

n = 2, m = 0, respectively, for γ = 0.5. For n = 1, m = 1, we have β1 = β2 = 2, while for
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Figure 3. The difference between the deficit angle δ/(2π) and the deficit angle for ε = 0, δ(ε =

0)/(2π) is given as function of ε for γ = 0.2, β1 = β2 = 2 and different choices of (n, m).

10
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2π
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(1,1) string
(2,0) string
(1,1) Melvin
(2,0) Melvin

(1,1) string

(1,1) Melvin
(2,0) Melvin

(2,0) string

γ=0.5

Figure 4. The value of the inertial mass µ(n,m) of string and Melvin solutions is shown in depen-

dence on the interaction parameter ε and γ = 0.5. For n = m = 1, we have chosen β1 = β2 = 2,

while for n = 2, m = 0, we have β1 = 2, β2 = 0.

n = 2, m = 0, we have β1 = 2, β2 = 0. In both cases, the mass of the solution is decreasing

with increasing interaction. It is thus apparent that also in curved space-time, a dark string

can lower its energy when coupling to an unbroken U(1) gauge symmetry. Moreover, the

total energy of the (1, 1) system is always lower than that of the (2, 0) system. Hence, the

binding is more efficient if a dark string and a cosmic string couple than if a dark string

couples to a pure gauge field.
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It has been observed that string-like solutions with a behaviour of the metric functions

N(x → ∞) → c1 and L(x → ∞) → c2x + c3 have a “shadow solution” in the form of so-

called Melvin solutions [15, 16]. In contrast to string-like solutions, Melvin solutions have

no flat space-time counterparts and their metric functions behave as N(x → ∞) → a1x
2/3

and L(x → ∞) → a2x
−1/3, where a1 and a2 are constants. These solutions are also present

in systems where cosmic strings interact via a potential term [11] and we also find them

here. In figure 4, we give the inertial mass of these solutions for two different choices

of n and m. When comparing to the string solutions, it is apparent that the mass of

the Melvin solutions is higher for all choices of the interaction parameter. Moreover, in

contrast to string solutions, the inertial mass of the Melvin solutions increases for increasing

interaction. This has also been observed in [11], where two cosmic strings interact via a

potential. The stronger the attractive interaction between the strings, the higher the

inertial mass of the Melvin solutions. In addition, the mass increases stronger for an (1, 1)

system of dark strings than for an n = 2 dark string coupled to the gauge field of the

unbroken U(1) symmetry. This is related to the observation that the binding is stronger

for the (1, 1) system than for the (2, 0) system.

4 Conclusions and outlook

In this paper, we have studied the interaction of a dark string with a cosmic string where

the interaction is mediated by a coupling term between the field strength tensors of the

respective solutions. This type of interaction is motivated by recent models describing the

dark matter sector. We observe that a BPS bound exists if the dark string is identical to

the cosmic string. In fact, we find that the attractive interaction between the two strings

is most efficient in this particular case. In addition, the attractive interaction allows for

dark-cosmic strings to exist for larger values of the Higgs to gauge boson ratio. The deficit

angle associated to the strings decreases for increasing interaction and globally regular

string space-times exist for higher values of the gravitational coupling as compared to the

non-interacting case. We also find dark string solutions that can lower their energy by

coupling to a U(1) field through the attractive interaction term.

The formation of bound states is of interest for the study of the evolution of string

networks. For p-q-strings it has been observed [21] that the formation of bound states

leads to an energy loss mechanism that is important in the evolution of string networks

towards the scaling regime. If the dark matter sector has indeed dark strings solutions

then standard cosmic strings could loose energy by coupling to these strings.

It would also be interesting to understand the influence of the type of interaction

studied here on superconducting strings [22]. In its simplest version this would be the

coupling of a U(1)× U(1) model (describing the superconducting string with bosonic charge

carriers) coupled to a U(1) model describing the dark string. The field strength tensor of

the dark string could then either be coupled to the field strength tensor associated to the

broken U(1) symmetry (similar to what has been studied in this paper) or alternatively to

the field strength tensor of the unbroken U(1) symmetry describing the carrier field.
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